In topology, a branch of mathematics, a topologically stratified space is a space X that has been decomposed into pieces called strata; these strata are topological manifolds and are required to fit together in a certain way. Topologically stratified spaces provide a purely topological setting for the study of singularities analogous to the more differential-geometric theory of Whitney. They were introduced by René Thom, who showed that every Whitney stratified space was also a topologically stratified space, with the same strata. Another proof was given by John Mather in 1970, inspired by Thom's proof.
The definition is inductive on the dimension of X. An n-dimensional topological stratification of X is a filtration
of X by closed subspaces such that for each i and for each point x of
there exists a neighborhood
of x in X, a compact n-i-1-dimensional stratified space L, and a filtration-preserving homeomorphism
Here is the open cone on L.
If X is a topologically stratified space, the i-dimensional stratum of X is the space
Connected components of Xi \ Xi-1 are also frequently called strata.